Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 97
1.
Orphanet J Rare Dis ; 19(1): 150, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589924

AIM: We aim to describe the behavioral phenotype of children and adolescents with the good to intermediate attenuated form of non-ketotic hyperglycinemia (NKH) and to explore associations between the behavioral phenotype and age, sex, plasma glycine levels and drug treatment. METHOD: Parents of children with attenuated NKH completed questionnaires assessing maladaptive behavior, adaptive behavior, social communication, speech/language development and motor development in addition to demographic and medical questions. RESULTS AND INTERPRETATION: Twelve children, age 6 to 21y, functioned at mild to severe intellectual disability levels. Their speech/language development was in line with their developmental quotient. Relative to their intellectual functioning, their motor development and communication were weaker in comparison to their general development. Their adaptive behavior, however, appeared a relative strength. There was no evidence for autism spectrum disorder occurring more frequently than expected, rather social skills, except for communication, were rated as a relative strength. Maladaptive behaviors with ADHD-like characteristics were present in more than two thirds of children. Maladaptive behaviors were significantly related to female sex and to taking dextromethorphan, but no significant relation between plasma glycine levels and behavior was found. Future studies will need to evaluate causality in the observed relation between dextromethorphan use and maladaptive behaviors. Clinicians should reconsider the benefit of dextromethorphan when presented with disruptive behaviors in children with attenuated NKH.


Autism Spectrum Disorder , Hyperglycinemia, Nonketotic , Child , Humans , Female , Adolescent , Young Adult , Adult , Hyperglycinemia, Nonketotic/drug therapy , Hyperglycinemia, Nonketotic/genetics , Autism Spectrum Disorder/drug therapy , Dextromethorphan/therapeutic use , Phenotype , Glycine/genetics , Glycine/therapeutic use
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38474060

The pathophysiology of nonketotic hyperglycinemia (NKH), a rare neuro-metabolic disorder associated with severe brain malformations and life-threatening neurological manifestations, remains incompletely understood. Therefore, a valid human neural model is essential. We aimed to investigate the impact of GLDC gene variants, which cause NKH, on cellular fitness during the differentiation process of human induced pluripotent stem cells (iPSCs) into iPSC-derived astrocytes and to identify sustainable mechanisms capable of overcoming GLDC deficiency. We developed the GLDC27-FiPS4F-1 line and performed metabolomic, mRNA abundance, and protein analyses. This study showed that although GLDC27-FiPS4F-1 maintained the parental genetic profile, it underwent a metabolic switch to an altered serine-glycine-one-carbon metabolism with a coordinated cell growth and cell cycle proliferation response. We then differentiated the iPSCs into neural progenitor cells (NPCs) and astrocyte-lineage cells. Our analysis showed that GLDC-deficient NPCs had shifted towards a more heterogeneous astrocyte lineage with increased expression of the radial glial markers GFAP and GLAST and the neuronal markers MAP2 and NeuN. In addition, we detected changes in other genes related to serine and glycine metabolism and transport, all consistent with the need to maintain glycine at physiological levels. These findings improve our understanding of the pathology of nonketotic hyperglycinemia and offer new perspectives for therapeutic options.


Hyperglycinemia, Nonketotic , Induced Pluripotent Stem Cells , Humans , Hyperglycinemia, Nonketotic/genetics , Hyperglycinemia, Nonketotic/pathology , Glycine Dehydrogenase (Decarboxylating)/genetics , Astrocytes/pathology , Induced Pluripotent Stem Cells/pathology , Glycine , Serine
3.
Neurology ; 102(3): e208105, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38175985

A 5-year-old boy presented with subacute motor regression since age 2.5 years. Examination revealed spasticity of bilateral lower extremities, generalized dystonia, and pseudobulbar palsy. Investigations revealed raised plasma lactate (2.5 mmol/L, normal range 0.8-1.5 mmol/L) and no evidence of sideroblastic anemia. Neuroimaging showed cavitating leukoencephalopathy with involvement of long tracts (corticospinal, spinothalamic tracts) and dorsolateral columns of cervicothoracic cord (Figures 1 and 2). A next-generation sequencing test identified a novel homozygous missense variant (c.171C > A, p.Phe57Leu) in exon 1 of the Glutaredoxin-5 (GLRX5) gene.


Hyperglycinemia, Nonketotic , Male , Humans , Child, Preschool , Hyperglycinemia, Nonketotic/complications , Hyperglycinemia, Nonketotic/diagnostic imaging , Hyperglycinemia, Nonketotic/genetics , Glutaredoxins/genetics , Mutation, Missense , Homozygote , Exons
4.
Biochimie ; 219: 21-32, 2024 Apr.
Article En | MEDLINE | ID: mdl-37541567

Non ketotic hyperglycinemia (NKH) is an inborn error of glycine metabolism caused by mutations in the genes encoding glycine cleavage system proteins. Classic NKH has a neonatal onset, and patients present with severe neurodegeneration. Although glycine accumulation has been implicated in NKH pathophysiology, the exact mechanisms underlying the neurological damage and white matter alterations remain unclear. We investigated the effects of glycine in the brain of neonatal rats and MO3.13 oligodendroglial cells. Glycine decreased myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) in the corpus callosum and striatum of rats on post-natal day (PND) 15. Glycine also reduced neuroglycan 2 (NG2) and N-methyl-d-aspartate receptor subunit 1 (NR1) in the cerebral cortex and striatum on PND15. Moreover, glycine reduced striatal glutamate aspartate transporter 1 (GLAST) content and neuronal nucleus (NeuN), and increased glial fibrillary acidic protein (GFAP) on PND15. Glycine also increased DCFH oxidation and malondialdehyde levels and decreased GSH concentrations in the cerebral cortex and striatum on PND6, but not on PND15. Glycine further reduced viability but did not alter DCFH oxidation and GSH levels in MO3.13 cells after 48- and 72-h incubation. These data indicate that impairment of myelin structure and glutamatergic system and induction of oxidative stress are involved in the neuropathophysiology of NKH.


Hyperglycinemia, Nonketotic , Humans , Animals , Rats , Hyperglycinemia, Nonketotic/genetics , Hyperglycinemia, Nonketotic/metabolism , Glycine , Myelin Sheath/metabolism , Oxidation-Reduction , Synaptic Transmission , Homeostasis
5.
Hum Mol Genet ; 32(6): 917-933, 2023 03 06.
Article En | MEDLINE | ID: mdl-36190515

Maintaining protein lipoylation is vital for cell metabolism. The H-protein encoded by GCSH has a dual role in protein lipoylation required for bioenergetic enzymes including pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase, and in the one-carbon metabolism through its involvement in glycine cleavage enzyme system, intersecting two vital roles for cell survival. Here, we report six patients with biallelic pathogenic variants in GCSH and a broad clinical spectrum ranging from neonatal fatal glycine encephalopathy to an attenuated phenotype of developmental delay, behavioral problems, limited epilepsy and variable movement problems. The mutational spectrum includes one insertion c.293-2_293-1insT, one deletion c.122_(228 + 1_229-1) del, one duplication of exons 4 and 5, one nonsense variant p.Gln76*and four missense p.His57Arg, p.Pro115Leu and p.Thr148Pro and the previously described p.Met1?. Via functional studies in patient's fibroblasts, molecular modeling, expression analysis in GCSH knockdown COS7 cells and yeast, and in vitro protein studies, we demonstrate for the first time that most variants identified in our cohort produced a hypomorphic effect on both mitochondrial activities, protein lipoylation and glycine metabolism, causing combined deficiency, whereas some missense variants affect primarily one function only. The clinical features of the patients reflect the impact of the GCSH changes on any of the two functions analyzed. Our analysis illustrates the complex interplay of functional and clinical impact when pathogenic variants affect a multifunctional protein involved in two metabolic pathways and emphasizes the value of the functional assays to select the treatment and investigate new personalized options.


Hyperglycinemia, Nonketotic , Humans , Hyperglycinemia, Nonketotic/genetics , Hyperglycinemia, Nonketotic/pathology , Proteins/genetics , Mutation , Exons/genetics , Glycine/genetics , Glycine/metabolism
6.
Ann Neurol ; 92(2): 292-303, 2022 08.
Article En | MEDLINE | ID: mdl-35616651

OBJECTIVE: Glycine encephalopathy, also known as nonketotic hyperglycinemia (NKH), is an inherited neurometabolic disorder with variable clinical course and severity, ranging from infantile epileptic encephalopathy to psychiatric disorders. A precise phenotypic characterization and an evaluation of predictive approaches are needed. METHODS: Longitudinal clinical and biochemical data of 25 individuals with NKH from the patient registry of the International Working Group on Neurotransmitter Related Disorders were studied with in silico analyses, pathogenicity scores, and molecular modeling of GLDC and AMT variants. RESULTS: Symptom onset (p < 0.01) and diagnosis occur earlier in life in severe NKH (p < 0.01). Presenting symptoms affect the age at diagnosis. Psychiatric problems occur predominantly in attenuated NKH. Onset age ≥ 3 months (66% specificity, 100% sensitivity, area under the curve [AUC] = 0.87) and cerebrospinal fluid (CSF)/plasma glycine ratio ≤ 0.09 (57% specificity, 100% sensitivity, AUC = 0.88) are sensitive indicators for attenuated NKH, whereas CSF glycine concentration ≥ 116.5µmol/l (100% specificity, 93% sensitivity, AUC = 0.97) and CSF/plasma glycine ratio ≥ 0.15 (100% specificity, 64% sensitivity, AUC = 0.88) are specific for severe forms. A ratio threshold of 0.128 discriminates the overlapping range. We present 10 new GLDC variants. Two mild variants resulted in attenuated, whereas 2 severe variants or 1 mild and 1 severe variant led to severe phenotype. Based on clinical, biochemical, and genetic parameters, we propose a severity prediction model. INTERPRETATION: This study widens the phenotypic spectrum of attenuated NKH and expands the number of pathogenic variants. The multiparametric approach provides a promising tool to predict disease severity, helping to improve clinical management strategies. ANN NEUROL 2022;92:292-303.


Hyperglycinemia, Nonketotic , Glycine/cerebrospinal fluid , Glycine/genetics , Humans , Hyperglycinemia, Nonketotic/diagnosis , Hyperglycinemia, Nonketotic/genetics , Hyperglycinemia, Nonketotic/pathology , Mutation , Phenotype
9.
Clin Genet ; 100(2): 201-205, 2021 08.
Article En | MEDLINE | ID: mdl-33890291

The glycine cleavage system H protein (GCSH) is an integral part of the glycine cleavage system with its additional involvement in the synthesis and transport of lipoic acid. We hypothesize that pathogenic variants in GCSH can cause variant nonketotic hyperglycinemia (NKH), a heterogeneous group of disorders with findings resembling a combination of severe NKH (elevated levels of glycine in plasma and CSF, progressive lethargy, seizures, severe hypotonia, no developmental progress, early death) and mitochondriopathies (lactic acidosis, leukoencephalopathy and Leigh-like lesions on MRI). We herein report three individuals from two unrelated Indian families with clinical, biochemical, and radiological findings of variant NKH, harboring a biallelic start loss variant, c.1A > G in GCSH.


Glycine Decarboxylase Complex H-Protein/genetics , Hyperglycinemia, Nonketotic/genetics , Child, Preschool , Female , Glycine/blood , Glycine/cerebrospinal fluid , Humans , Hyperglycinemia, Nonketotic/etiology , Male , Mutation , Pedigree
10.
Metab Brain Dis ; 36(6): 1213-1222, 2021 08.
Article En | MEDLINE | ID: mdl-33791923

Nonketotic hyperglycinemia is an autosomal recessive inborn error of glycine metabolism, characterized by deficient activity of the glycine cleavage enzyme system. Classic nonketotic hyperglycinemia is caused by mutations or genomic changes in genes that encode the protein components of the glycine cleavage enzyme system. We aimed to investigate clinical, biochemical, radiological findings and molecular genetic data in ten Turkish patients with classic nonketotic hyperglycinemia. Ten Turkish patients who were diagnosed with classic nonketotic hyperglycinemia in a single center from 2013 to 2019 were included in this study. Their clinical, radiological, electrophysiological and laboratory data were collected retrospectively. Sixty percent of the patients were in neonatal group, while 40 % of the patients were infantile. There were no late-onset patients. 90 % of the patients had the severe form. All patients had developmental delay and seizures. Mortality ratio was 30 % in all groups and 50 % in the neonatal group, while no mortality was seen in infantile group. Median (range) values of cerebrospinal fluid (CSF) glycine levels, plasma glycine levels and CSF/plasma glycine ratios were 148 (15-320) µmol/L, 896 (87-1910) µmol/L, 0.17 (0.09-0.21) respectively. Diffuse hypomyelination and corpus callosum anomaly were the most common cranial MRI findings and multifocal epileptic activity and burst supression pattern were the most common electroencephalographic findings. Six patients had variants in GLDC gene and four in AMT gene; five novel variants including AMT gene deletion were detected. Prognosis was poor and treatment was not effective, especially in the severe form. Classic nonketotic hyperglycinemia causes high morbidity and mortality. Neonatal-onset disease was more common and severe than infantile-onset disease. The ratio of AMT gene variants might be higher in Turkey than other countries. AMT gene deletion also plays a role in the etiology of classic nonketotic hyperglycinemia.


Genotype , Hyperglycinemia, Nonketotic/genetics , Mutation/genetics , Seizures/etiology , Agenesis of Corpus Callosum , Amino Acid Oxidoreductases/genetics , Female , Glycine/metabolism , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Multienzyme Complexes/genetics , Retrospective Studies , Seizures/genetics , Transferases/genetics
11.
Sci Rep ; 11(1): 3148, 2021 02 04.
Article En | MEDLINE | ID: mdl-33542258

Delayed emergence from anesthesia was previously reported in a case study of a child with Glycine Encephalopathy. To investigate the neural basis of this delayed emergence, we developed a zebrafish glial glycine transporter (glyt1 - / -) mutant model. We compared locomotor behaviors; dose-response curves for tricaine, ketamine, and 2,6-diisopropylphenol (propofol); time to emergence from these anesthetics; and time to emergence from propofol after craniotomy in glyt1-/- mutants and their siblings. To identify differentially active brain regions in glyt1-/- mutants, we used pERK immunohistochemistry as a proxy for brain-wide neuronal activity. We show that glyt1-/- mutants initiated normal bouts of movement less frequently indicating lethargy-like behaviors. Despite similar anesthesia dose-response curves, glyt1-/- mutants took over twice as long as their siblings to emerge from ketamine or propofol, mimicking findings from the human case study. Reducing glycine levels rescued timely emergence in glyt1-/- mutants, pointing to a causal role for elevated glycine. Brain-wide pERK staining showed elevated activity in hypnotic brain regions in glyt1-/- mutants under baseline conditions and a delay in sensorimotor integration during emergence from anesthesia. Our study links elevated activity in preoptic brain regions and reduced sensorimotor integration to lethargy-like behaviors and delayed emergence from propofol in glyt1-/- mutants.


Delayed Emergence from Anesthesia/genetics , Glycine Plasma Membrane Transport Proteins/genetics , Glycine/metabolism , Hyperglycinemia, Nonketotic/genetics , Neurons/metabolism , Preoptic Area/metabolism , Zebrafish Proteins/genetics , Aminobenzoates , Anesthesia, General , Anesthetics , Animals , Animals, Genetically Modified , Craniotomy , Delayed Emergence from Anesthesia/metabolism , Delayed Emergence from Anesthesia/physiopathology , Delayed Emergence from Anesthesia/prevention & control , Disease Models, Animal , Gene Expression , Glycine/pharmacology , Glycine Plasma Membrane Transport Proteins/deficiency , Hyperglycinemia, Nonketotic/drug therapy , Hyperglycinemia, Nonketotic/metabolism , Hyperglycinemia, Nonketotic/physiopathology , Ketamine , Locomotion/physiology , Neurons/drug effects , Neurons/pathology , Preoptic Area/drug effects , Preoptic Area/pathology , Propofol , Zebrafish , Zebrafish Proteins/deficiency , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
12.
PLoS Genet ; 17(2): e1009307, 2021 02.
Article En | MEDLINE | ID: mdl-33524012

Hundreds of mutations in a single gene result in rare diseases, but why mutations induce severe or attenuated states remains poorly understood. Defect in glycine decarboxylase (GLDC) causes Non-ketotic Hyperglycinemia (NKH), a neurological disease associated with elevation of plasma glycine. We unified a human multiparametric NKH mutation scale that separates severe from attenuated neurological disease with new in silico tools for murine and human genome level-analyses, gathered in vivo evidence from mice engineered with top-ranking attenuated and a highly pathogenic mutation, and integrated the data in a model of pre- and post-natal disease outcomes, relevant for over a hundred major and minor neurogenic mutations. Our findings suggest that highly severe neurogenic mutations predict fatal, prenatal disease that can be remedied by metabolic supplementation of dams, without amelioration of persistent plasma glycine. The work also provides a systems approach to identify functional consequences of mutations across hundreds of genetic diseases. Our studies provide a new framework for a large scale understanding of mutation functions and the prediction that severity of a neurogenic mutation is a direct measure of pre-natal disease in neurometabolic NKH mouse models. This framework can be extended to analyses of hundreds of monogenetic rare disorders where the underlying genes are known but understanding of the vast majority of mutations and why and how they cause disease, has yet to be realized.


Disease Models, Animal , Glycine Dehydrogenase (Decarboxylating)/chemistry , Glycine Dehydrogenase (Decarboxylating)/genetics , Glycine/metabolism , Hyperglycinemia, Nonketotic/genetics , Animals , Female , Genomics , Genotype , Glycine/genetics , Humans , Hyperglycinemia, Nonketotic/metabolism , Hyperglycinemia, Nonketotic/pathology , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Mutation, Missense , Phenotype
14.
Am J Med Genet A ; 185(2): 476-485, 2021 02.
Article En | MEDLINE | ID: mdl-33269555

GLYT1 encephalopathy is a form of glycine encephalopathy caused by disturbance of glycine transport. The phenotypic spectrum of the disease has not yet been completely described, as only four unrelated families with the disorder have been reported to date. Common features of affected patients include neonatal hypotonia, respiratory failure, encephalopathy, myoclonic jerks, dysmorphic features, and musculoeskeletal anomalies. All reported affected patients harbor biallelic genetic variants in SLC6A9. SNP array together with Sanger sequencing were performed in a newborn with arthrogryposis and severe neurological impairment. The novel genetic variant c.997delC in SLC6A9 was detected in homozygous state in the patient. At protein level, the predicted change is p.(Arg333Alafs*3), which most probably results in a loss of protein function. The variant cosegregated with the disease in the family. A subsequent pregnancy with ultrasound anomalies was also affected. The proband presented the core phenotypic features of GLYT1 encephalopathy, but also a burst suppression pattern on the electroencephalogram, a clinical feature not previously associated with the disorder. Our results suggest that the appearance of this pattern correlates with higher cerebrospinal fluid glycine levels and cerebrospinal fluid/plasma glycine ratios. A detailed discussion on the possible pathophysiological mechanisms of the disorder is also provided.


Arthrogryposis/genetics , Genetic Predisposition to Disease , Glycine Plasma Membrane Transport Proteins/genetics , Hyperglycinemia, Nonketotic/genetics , Abortion, Spontaneous/genetics , Abortion, Spontaneous/pathology , Arthrogryposis/mortality , Arthrogryposis/pathology , Female , Glycine/genetics , Glycine/metabolism , Homozygote , Humans , Hyperglycinemia, Nonketotic/mortality , Hyperglycinemia, Nonketotic/pathology , Infant, Newborn , Male , Mutation/genetics , Pedigree , Phenotype
15.
PLoS Comput Biol ; 16(5): e1007871, 2020 05.
Article En | MEDLINE | ID: mdl-32421718

Monogenetic diseases provide unique opportunity for studying complex, clinical states that underlie neurological severity. Loss of glycine decarboxylase (GLDC) can severely impact neurological development as seen in non-ketotic hyperglycinemia (NKH). NKH is a neuro-metabolic disorder lacking quantitative predictors of disease states. It is characterized by elevation of glycine, seizures and failure to thrive, but glycine reduction often fails to confer neurological benefit, suggesting need for alternate tools to distinguish severe from attenuated disease. A major challenge has been that there are 255 unique disease-causing missense mutations in GLDC, of which 206 remain entirely uncharacterized. Here we report a Multiparametric Mutation Score (MMS) developed by combining in silico predictions of stability, evolutionary conservation and protein interaction models and suitable to assess 251 of 255 mutations. In addition, we created a quantitative scale of clinical disease severity comprising of four major disease domains (seizure, cognitive failure, muscular and motor control and brain-malformation) to comprehensively score patient symptoms identified in 131 clinical reports published over the last 15 years. The resulting patient Clinical Outcomes Scores (COS) were used to optimize the MMS for biological and clinical relevance and yield a patient Weighted Multiparametric Mutation Score (WMMS) that separates severe from attenuated neurological disease (p = 1.2 e-5). Our study provides understanding for developing quantitative tools to predict clinical severity of neurological disease and a clinical scale that advances monitoring disease progression needed to evaluate new treatments for NKH.


Gene Expression Regulation, Enzymologic , Genotype , Glycine Dehydrogenase (Decarboxylating)/genetics , Hyperglycinemia, Nonketotic/genetics , Mutation, Missense , Phenotype , Humans , Hyperglycinemia, Nonketotic/diagnosis , Hyperglycinemia, Nonketotic/pathology , Severity of Illness Index
16.
Stem Cell Res ; 39: 101503, 2019 08.
Article En | MEDLINE | ID: mdl-31349202

A human induced pluripotent stem cell (iPSC) line was generated from fibroblasts of a patient with nonketotic hyperglycinemia bearing the biallelic changes c.1742C > G (p.Pro581Arg) and c.2368C > T (p.Arg790Trp) in the GLDC gene. Reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC were delivered using a non-integrative method based on the Sendai virus. Once established, iPSCs have shown full pluripotency, differentiation capacity and genetic stability. This cellular model provides a good resource for disease modeling and drug discovery.


Hyperglycinemia, Nonketotic/genetics , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Humans , Infant, Newborn , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Male , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
17.
J Med Primatol ; 48(3): 161-165, 2019 06.
Article En | MEDLINE | ID: mdl-30724368

BACKGROUND: Nonketotic hyperglycinemia (NKH) is a rare metabolic disorder that is characterized by high levels of glycine in plasma and cerebrospinal fluid in humans. In this study, total congenital cataract captive-bred Vervet monkeys (Chlorocebus aethiops) that are hyperglycinemic were screened to identify mutations in Bola type 3 (BOLA3), glutaredoxin 5 (GLRX5), and lipoate synthase (LIAS) genes. METHODS: Twenty-four Vervet monkeys (12 hyperglycinemic and 12 healthy controls) were selected for mutation analysis using polymerase chain reaction (PCR), Sanger sequencing, and reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: Novel sequence variants were identified in BOLA3 (R23H and Q38R) and LIAS (R369I and A371A), and gene expression in the control group was significantly lower compared to the hyperglycinemic group (P < 0.05). CONCLUSION: The data obtained from this study will contribute to generation of new knowledge regarding the involvement of these genes in NKH development.


Cataract/congenital , Chlorocebus aethiops , Genetic Diseases, X-Linked/veterinary , Hyperglycinemia, Nonketotic/veterinary , Microphthalmos/veterinary , Monkey Diseases/genetics , Animals , Animals, Zoo , Cataract/genetics , Cataract/veterinary , Genetic Diseases, X-Linked/genetics , Hyperglycinemia, Nonketotic/genetics , Microphthalmos/genetics
18.
Metab Brain Dis ; 34(1): 373-376, 2019 02.
Article En | MEDLINE | ID: mdl-30350008

Nonketotic Hyperglycinemia is an autosomal recessive disorder characterized by defects in the mitochondrial glycine cleavage system. Most patients present soon after birth with seizures and hypotonia, and infants that survive the newborn period often have profound intellectual disability and intractable seizures. Here we present a case report of a 4-year-old girl with NKH as well as hyperammonemia, an uncommon finding in NKH. Genetic analysis found a previously unreported homozygous mutation (c.878-1 G > A) in the AMT gene. Maximum Entropy Principle modeling predicted that this mutation most likely breaks the splice site at the border of intron 7 and exon 8 of the AMT gene. Treatment with L-Arginine significantly reduced both the proband's glycine and ammonia levels, in turn aiding in control of seizures and mental status. This is the first time the use of L-Arginine is reported to successfully treat elevated glycine levels.


Aminomethyltransferase/genetics , Hyperammonemia/genetics , Hyperglycinemia, Nonketotic/genetics , Introns , Mutation , Child, Preschool , Female , Homozygote , Humans , Hyperammonemia/complications , Hyperglycinemia, Nonketotic/complications
19.
JCI Insight ; 3(21)2018 11 02.
Article En | MEDLINE | ID: mdl-30385710

Glycine encephalopathy (GE), or nonketotic hyperglycinemia (NKH), is a rare recessive genetic disease caused by defective glycine cleavage and characterized by increased accumulation of glycine in all tissues. Here, based on new case reports of GLDC loss-of-function mutations in GE patients, we aimed to generate a zebrafish model of severe GE in order to unravel the molecular mechanism of the disease. Using CRISPR/Cas9, we knocked out the gldc gene and showed that gldc-/- fish recapitulate GE on a molecular level and present a motor phenotype reminiscent of severe GE symptoms. The molecular characterization of gldc-/- mutants showed a broad metabolic disturbance affecting amino acids and neurotransmitters other than glycine, with lactic acidosis at stages preceding death. Although a transient imbalance was found in cell proliferation in the brain of gldc-/- zebrafish, the main brain networks were not affected, thus suggesting that GE pathogenicity is mainly due to metabolic defects. We confirmed that the gldc-/- hypotonic phenotype is due to NMDA and glycine receptor overactivation, and demonstrated that gldc-/- larvae depict exacerbated hyperglycinemia at these synapses. Remarkably, we were able to rescue the motor dysfunction of gldc-/- larvae by counterbalancing pharmacologically or genetically the level of glycine at the synapse.


Glycine Dehydrogenase (Decarboxylating)/deficiency , Glycine/blood , Hyperglycinemia, Nonketotic/genetics , Motor Disorders/enzymology , Synaptic Transmission/drug effects , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , CRISPR-Associated Protein 9/metabolism , Dextromethorphan/administration & dosage , Dextromethorphan/therapeutic use , Excitatory Amino Acid Antagonists/therapeutic use , Fatal Outcome , Female , Food Preservatives/therapeutic use , Glycine/cerebrospinal fluid , Glycine Dehydrogenase (Decarboxylating)/metabolism , Humans , Hyperglycinemia, Nonketotic/diagnosis , Hyperglycinemia, Nonketotic/enzymology , Infant, Newborn , Male , Middle Aged , Motor Disorders/physiopathology , Mutation , Phenotype , Sodium Benzoate/administration & dosage , Sodium Benzoate/therapeutic use , Treatment Outcome , Zebrafish
...